首页> 外文OA文献 >Multi-Temporal Depth Motion Maps-Based Local Binary Patterns for 3D Human Action Recognition
【2h】

Multi-Temporal Depth Motion Maps-Based Local Binary Patterns for 3D Human Action Recognition

机译:基于多时域深度运动图的局部二进制模式用于3D人体动作识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a local spatio-temporal descriptor for action recognition from depth video sequences which is capable of distinguishing similar actions as well as coping with different speeds of actions. This descriptor is based on three processing stages. In the first stage, the shape and motion cues are captured from a weighted depth sequence by temporally overlapped depth segments, leading to three improved depth motion maps (DMMs) compared to previously introduced DMMs. In the second stage, the improved DMMs are partitioned into dense patches, from which the local binary patterns histogram features are extracted to characterize local rotation invariant texture information. In the final stage, a Fisher kernel is used for generating a compact feature representation, which is then combined with a kernel-based extreme learning machine (ELM) classifier. The developed solution is applied to five public domain datasets and is extensively evaluated. The results obtained demonstrate the effectiveness of this solution as compared to the existing approaches.
机译:本文提出了一种用于深度视频序列中用于动作识别的局部时空描述符,该描述符能够区分相似的动作以及应对不同的动作速度。该描述符基于三个处理阶段。在第一阶段,通过时间上重叠的深度段从加权深度序列中捕获形状和运动提示,与先前引入的DMM相比,得到了三个改进的深度运动图(DMM)。在第二阶段,将改进的DMM划分为密集的补丁,从中提取局部二进制模式直方图特征以表征局部旋转不变纹理信息。在最后阶段,将Fisher内核用于生成紧凑的特征表示,然后将其与基于内核的极限学习机(ELM)分类器组合。开发的解决方案已应用于五个公共领域的数据集,并得到了广泛的评估。与现有方法相比,获得的结果证明了该解决方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号